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The quantum damped driven harmonic oscillator 

C I Uml, K H Yeon and W H Kahng 
Department of Physics, College of Science, Korea University, Seoul 132, South Korea 

Received 4 March 1986, in final form 19 May 1986 

Abstract. Using the Caldirola-Kanai Hamiltonian with an external driving force for the 
damped driven harmonic oscillator as the quantum dissipative system, we have exactly 
evaluated the propagator, wavefunction, uncertainty relation and the transition amplitudes 
by the Feynman path integral method. 

1. Introduction 

Although the Feynman path integral formulation (Feynman and Hibbs 1965) offers a 
general approach for treating quantum mechanical systems, only a few time-dependent 
Schrodinger equations can be solved exactly. One of these solvable problems is the 
damped harmonic oscillator described by the Caldirdla-Kanai Hamiltonian (Caldirola 
1941, 1983, Kanai 1948). One can obtain the time-dependent Schrodinger equation 
for the damped harmonic oscillator by replacing the momentum with (h/ i ) (J /Jx)  in 
the Caldirola-Kanai Hamiltonian. However, the question is whether or not this 
equation represents the quantum mechanical dissipative system (Dekker 1981) as 
the Caldirola-Kanai Hamiltonian does for a classical case. Some workers (Dodonov 
and Manko 1979) have claimed that the Caldirola-Kanai equation describes the 
quantum dissipative systems, while others (Greenberger 1979, Senitzky 1960) have 
objected to it. The main flaw of the Dodonov-Manko result is its uncertainty relation, 
ApAx 2 e-" 'h/2 in which the uncertainty vanishes as t + 0O. This difficulty is critically 
reviewed by Greenberger (1979) and Cervero and Villarroel (1984). Greenberger has 
introduced the variable mass: m( t )  = m, e" and removed the violation of the uncer- 
tainty. 

The purpose of this paper is to extend our previous results for the damped harmonic 
oscillator (Yeon et a1 1982, 1985a, b) to the damped driven harmonic oscillator by the 
path integral method. We introduce the Caldirola-Kanai Hamiltonian with an external 
driving force for the damped driven harmonic oscillator. We review the classical case 
of the Caldirola-Kanai Hamiltonian with an external driving force as a model for the 
time-dependent harmonic oscillator in § 2. In § 3 we first evaluate the propagator for 
the damped free particle and then the propagator for the damped quadratic Hamiltonian 
system. Section 4 gives the exact derivation of the propagator for the damped driving 
harmonic oscillator. In 0 5 we evaluate the wavefunction by using the results obtained 
in § 4. The energy expectation values at various states are given in § 6. In § 7 without 
any ambiguity we evaluate explicitly the uncertainty relation at various states and show 
that it does not vanish as t + 00, but oscillates. Section 8 gives an explicit formula for 
the transition amplitudes and probabilities. In § 9  we discuss our results with 
examples. 

t Supported by BSRI Program, Ministry of Education 1985. 
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2. Classical case 

We introduce the Hamiltonian of the time-dependent damped driven harmonic oscil- 
lator (DDHO) as 

H = e-01'p2/2m + ea'(imwix2 - xf( t ) )  (2.1) 

where f (  t )  is an external driving force and a is the positive constant. The Hamilton 
equations of motion for (2.1) are 

P l m  x = e-"' 

Jj  = -e+"' (mwix - A t ) ) .  

Equations (2.1) and (2.2) yield the Lagrangian 

and the corresponding equation of motion is 

x + ax + wix2 = f (  t ) /  m. (2.5) 

Equation (2.1) can be considered as the Hamiltonian of a quantum damped driven 
harmonic oscillator, which bears analogy with that of a classical damped driven 
harmonic oscillator. The classical solution of equation (2.5) is 

x( t) = A cos( wt + p)+ e-"' cos wt cos 2wt '  dt '  f0 e-ar12 cos ws ds (2.6) I' 1'' m 

with 

w = (w:-a2/4)L'2 

The mechanical energy can be expressed as 

E =e-2"'p2/2m +I 2mwOx. 2 2 

(2.7) 

Here, the energy expression in equation (2.8) is not equal to the Hamiltonian itself. 

3. Path integral of the oscillator system 

In path integral formulation the solution of the Schrodinger equation is given as the 
path-dependent integral equation with propagator K : 

(3.1) 

which gives the wavefunction +(x, t )  at time t in terms of the wavefunction i+b(xo, 0) 
at time t = O .  The propagator can be expressed by the path integral 
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where the integrations are over all possible paths between two points and Sc(x, xo, t )  
is the classical action defined as the integral of the Lagrangian t ( x ,  xo, t ’ )  between 
t = t  and t = O :  

SJx, xo, t )  = lo‘ L(x, xo, 1’) dt’. 

In (3.2) A., is the normalisation factor given by 

(3.3) 

Since the Hamiltonian of a damped free particle is 

H = e-OL1p2/2m (3.5) 

and the corresponding Lagrangian becomes 

( 3 . 6 )  

Substituting equations (3.3)-(3.6) into (3.2), we obtain the damped free particle 
propagator: 

L = e‘‘fmi2, 

iam ea‘’2 
4h sinh +at K(x, t ;  xo, 0) = (x-xo)2). (3.7) 

Now we return to the Hamiltonian and the Lagrangian of the damped harmonic 
oscillator. If the Lagrangian is quadratic, then the propagator can be written as 

K ( x , t ; x , , O ) = F ( t ) e x p  -Sc(x ,x0 , t )  . (3.8) 

The propagator K can be determined explicitly if one evaluates the multiplicative 
function F ( t )  given in the form 

(a 1 

where y ( t ’ )  is the deviation of x(t’) from its classical limit and all paths y ( t ’ )  arrive 
at (0, t )  from (0,O). Thus these paths can be expressed as a damped Fourier sine series 
with a fundamental period t :  

N 

y ( t ’ )  = n = 1  1 a, s i n ( y t ’ )  t’= EN. (3.10) 

Substituting (3.10) into (3.9) and integrating over t’  the path integral F ( t )  becomes 

As N + 00 and E + 0, the second bracket has the limit sinusoidal form. Thus we may 
write (3.11) as 

sin w t  - ‘ I 2  
F ( t )  = C(-) wt  (3.12) 
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where w is given in (2.7). Since (3.12) should be reduced to (3.7) for wo=O, we can 
determine the constant C. The path integral F ( t )  becomes 

(3.13) 

Hence the propagator of the damped quadratic Hamiltonian system can be written as 

(3.14) 

Here the classical action has not explicitly been evaluated, but we will work it out in 
the next section. 

4. Propagator 

The classical action of the DDHO Hamiltonian is 

S, = e f mx' - fmwtx2 + xf( t ')) d t '. I (4.1) 

In (4.1) for small wo the kinetic energy is dominant and then the Lagrangian acts like 
that of a damped free particle under the driven force. Therefore we may give the 
propagator as 

K(x, t ;  xo,O)= F ( t ) e x p [ - u ( e " ' x - ~ ~ ) ~ ] .  (4.2) 

Here a is a time-dependent function. Since we know the Gaussian dependence of the 
propagator for a damped free particle, we may take the propagator for DDHO as having 
the following form: 

K(x,r ;x , ,O)=exp a(t)e" '-x 171% 2 +b(t)e"" '  
h 

Changing variables t and x into 

X 
0 0  

2i 
p = - t  

(4.3) 

(4.4) 

the propagator is then expressed by 

and (4.5) must satisfy the Schrodinger equation 

(4.6) ih  aK/a t  = HK.  

Substitution of (4.5) and (2.1) into (4.6) gives the time-dependent coefficients 

a ( t ) = p + f r c o t ( 2 y p )  (4.7) 
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with 

b ( t ) = - -  2(mhw')'/2 l p f ( p )  exp( i " p )  sin(2yp) dp (4.9) 
sin (2 y p  ) sin ( 2 y p  ) WO 

and 

(4.10) 

2B 
sin'(2yp) 

- 

where the constants B and co obtained in comparison with (4.2), (4.7), (4.9) and (4.10) 
can be expressed as 

B = i( E) "2xo 

log co = log( E) - i - xo. m 2  

4h 

1/2 

(4.11) 

(4.12) 

Substitution of (4.7)-(4.12) into (4.3) gives the propagator for DDHO: 

+ ~ l b f ( f f ) e " " ~ 2 s i n w ( t - t ' ) d t '  m sin wt 

+L lor [o"f(r')f(S) exp[a( t '+S)/2]  sin w ( t  - t') sin US d S  dt '  
m2w 

(4.13) 

Setting f( t )  = 0 or a = 0, (4.13) is reduced to the propagator of the damped harmonic 
oscillator or the forced harmonic oscillator. When a =f( t )  = 0, (4.13) becomes the 
familiar propagator of the harmonic oscillator. To simplify the expression we write 
(4.13) as 

K(x, t ;  xo ,O)=F( t ) exp  (4.14) 
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where 

a' = (-iff + w mt ut) eo' (4.15) 

6 = (fa + w cot at) (4.16) 

e"112 c = -- 
sin wt 

(4.17) 

A( t )  = f( t ' )  en"/2 sin ut' dt '  I: 
U( t )  = f ( t ' )  ea"'2 sin w (  t - t ' )  dt '  i: 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

V (  t )  = lo' l0''f( t ' ) f (  S )  exp[a ( S  + t ' ) / 2 ]  sin U (  t - t ' )  sin wS d S  dt '  

(4.23) 

(4.24) 

5. Wavefunction 

In this section we will discuss the wavefunction of DDHO. The Hamiltonian of DDHO 

(equation (2.1)) reduces to the quadratic form at t = 0: 

Changing the variable x into x + f 2 ( 0 ) / m w i  we can eliminate the constant term in 
(5.1). The corresponding wavefunction (L,(x, 0) and the energy eigenvalue are given by 

t , b , , ( x , O ) = N , , H n [ a o ( x - ~ ) ]  mu0 exp[ - & ( x - q ) ' ]  "0 

where H ,  is the Hermite polynomial of order n and the coefficients are 

mw Q ;I2 No = 
(2% !&)''** 

(5 .2 )  

(5.4) 



The quantum damped driven harmonic oscillator 617 

For the convenience of the calculation of other q u a  ities we set f (  0 )  = 0: and then 
(5.2) and (5.3) reduce to the following: 

$,,(x, 0 )  = NoH,,(ffox) e x p ( - k w 2 )  (5.5) 

E,, =(n+$)hwo .  (5.6) 

With the use of (3.1), (4.14) and ( 5 . 5 ) ,  the wavefunction can be obtained in the form 

-a 

Using the following relations: 
LE 

exp[ -(x - y )’I H,, ( ax )  d x  = &( 1 - a ’1 “”H,  [ ay( 1 - a’)-”’] I, 
(a-ib)’”’ ( a”) ( ;) 

= exp -in tan-’ - = exp -in cot-’ - 
a + i b  

we finally obtain the wavefunction 

$n(X, f )  = N (2”n ! ) I ”  e x p { - i [ ~ n + i ) c o t - l ( ~ + c o t w t ) + ? ] }  

x exp[-(Ax2+2Bx)]H,,[D(x - E ) ] .  

Here 

a/2w +cot wf 

L( r ) 2  sin’ w t  

ff /2w + cot w t  

ea‘’2 [m(t)-i( l( t)’sin w t . A ( t ) +  sin w t  2h5(t)’sin2 or 
B ( t ) = -  

a. e”‘” 
5(  t )  sin w t  

D ( t )  = 

( 2 )  e-“‘” 
mu 

E ( t )  = 

6. Energy expectation values 

(5.7) 

(5.8) 

(5 .9 )  

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

The mechanical energy of DDHO (equation (2.8)) can be expressed as the energy 
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operator 
2 

-20‘  a2 E =--e -+$mwzx2. 
OP 2 m  ax2 

The quantum mechanical expectation values of E take the form 

To evaluate the energy expectation values (E),,,,, we use the following wavefunction 
(see equation (5.10)): 

1 1/2 

$,,(x, t ) =  N ( 7 )  2 n! exp[ - i (n+$)  co t - l (E+cot  ut ) ]  

x exp[ -(Ax2 + ~ B x ) ]  H,,[ D(x  - E)].  (6.3) 
In (6.3) we have eliminated the imaginary part off ;  which does not include n and x 
in the exponent, because it does not contribute to the probability or the expectation 
values of the physical quantities. 

The expectation value of x2, i.e. (x’),,,,,, is 

(X2)mn = J +*m(x, f)x2JIn(x, t )  dx 

1/2 1 
exp[-i( n - m) cot-’(a/2w +cot ut)] 

= (2n+m7rn ! m !) 

h 
2mw 

+ [ n ( n - 1 ) 1 1 ’ 2 - ~ ( t ) 2 s i n ’ w t  e-”‘ 
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We may evaluate (a2/ax’),,, in a similar way: 

(6.6) 

Transforming x into ( Y I D +  E )  and using the recurrence relations of Hermite poly- 
nomials, we obtain 

where 
D~ E 

(E + A E ) y  +- ( A E  + 2B) A 

Substitution of (6.7) in (6.6) and integration over x yields 

+4[2(n + l)]”’ exp[i cot-’(a/2w+cot w t ) ] - ( B + A E ) S m , , , + l  A 
D 

+4(2n)’” exp[-i ~ 0 t - ’ ( a / 2 w + c o t  or)] 

+2[n(n - 1)]1’2 exp[-i 

Substituting (6.5) and (6.9) in (6.2), we can directly obtain the non-zero matrix elements 
of (E), , , , ,  which occur only in the principal diagonal and the four diagonals adjacent 
to the principal diagonal: 

(E), , , , , , ,  = [(n +2)(n + I ) ] ” ~ -  e-”‘ exp[2i cot-’(a/2o +cot ut)] 
hw 
4 

1 1 + 
l( t)’sinZ ot 6(t)’sin2 wt 

I’ x [(;-cot wr)l(r)’sin’ wt +-+cot a 

I1 - 2i[ (5- cot w t ) l ( t ) ’  sin2 ot +-+ a cot ut 

wt 
2w 

2w 

(6.10) 



620 C I Um, K H Yeon and W H Kahng 

11 x [ (;-cot wt)i(r)'sin'wt+-+cot (Y w t - i  
2w 

+- o(t)',~,, +- e-a'[ -- A ( t )  + 0 o(; - cot 
* 

2m 2m sinwt 

(6.11) 

(6.12) 

( E ) n - l , n  = h v ( f ) *  (6.13) 

and 

(E)n-2,n = [ n ( n  - ~ ) ] " ~ e ( r ) * .  (6.14) 

Except for the second off-diagonal elements (En+2,n and E , - 2 , , )  the diagonal and the 
first off-diagonal elements are involved in the external driving force, i.e. f( t ) .  

7. The uncertainty relation 

In this section we evaluate the uncertainty relation. In a similar way to that used to 
obtain (6.5) and (6.6) we calculate the quantities ( x ) ~ ,  and (d/ax),,,,,: 

Re B exp[i c o t - I ( ( ~ / 2 0  +cot ~ t ) l S , , , , + ~  -- 
Re A 8 m s n  

1 / 2  

exp[-i cot-'(a/2w +cot wt) ]8 , , , - ,  

and 

(7.1) 
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With the help of (6.5) and (6.9) the uncertainty relations in the various states can be 
obtained: 

[(Ax)2(AP)’l:/:,,n = [((x’) - (X)*)((P’) - (P)2)1:/:z,n 

= [ ( n  +2)(n + I)]‘”’ 

+ -+cot wt  - i  exp[2icot-’(a/2w+cot ut)] (z”0 ) I  

+ i n {  1 - [ (5- cot w t ) i ( t ) 2  sin2 wt + -+ cot w t  (L ) I 2  
+2i[(01-cotwt) i ( t )*sin’wr+ 2w (z”0 -+cotwt )I1 

1/2 

- i n )  [2( n + I ) ]”’cI(  t )  n 1’1 (mhw)’/’i( t )  sin wt 
x exp[i cot-’(a/2w+cot w t )  

x exp[i cot-’( a /2w +cot w t ) ]  (7 .4)  

(7.5) 

(7.6) 

and 

[(Ax)~(AP)~]! ,?~, ,  = [n (n  - l)]”’&(t)*. 
Taking the complex conjugate and changing ( n  + 1) into n in (7 .4)  we can easily obtain 
the uncertainty in the ( n  - 1, n )  state. 

8. Transition amplitudes 

Using the wavefunction (equation (5 .7) )  we shall compute the transition amplitudes 
amSn for the damped driven harmonic oscillator from a state Im) to a state In). The 
transition amplitude is given by 

5 

a m n  =J-= dx cLm(x, O)cLn(x, t )  (8.1) 

x exp[-i(n +$) cot-’(a/2w +cot u t ) ]  
X 

exp[ -($a + A ) x’ - 2 Bx I Hm ( cy0x ) If,, [ D ( x - E ) 3 dx. (8.2) 
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To evaluate the integral in (8.2) we define the generating function S(x, s )  and S(x, t )  
for the nth-order Hermite polynomials as 

Multiplying (8.3) by (8.4) and the exponential term given in (8.2) we obtain 

s m t m  f f __ 1 dx H m ( a o x ) H n [ D ( x - E ) ]  exp[-(&i+A)x2-2Bx] ,,,=o n = O  m!n! 
'x 

=exp( - ( s2+t2) -2DEt  dx  exp{-[(fai+A)x2 

- 2Bx + 2 . ~ 0 ~  + ZtDx]} . 1 
Performing the integral for the right-hand side of (8.5) we obtain 

[(  D2 -;(YO- A ) / ( ~ c Y ~ +  A) lk[ (2B+fa0E + AE)/ ( fao+ A)]'((uOD)' 
X 

k ! l ! p !  
s2,+,+p 2 k + / + p  t 

Then the integral pert of (8.5) can be written as 

dx Hm(aox)Hn[D(x  - E)] exp{-[(fai+A)x2+2Bx]} 

m i n i m , n i - p  ( - ~ ) J + I ~  ! n !  a g ~ l + ~  

j ! l ! p !  c 
l = O  

c c  
A)(m-J-P)/2 (2aoB)J(D2 - f a o -  A)("-'-P)/2 (2B+4a0E + A E ) '  

X [f( m - j -p)]!  [i(m - I - p ) ] !  (fao+ A)(m+n+k+'-2p)12 
(8.7) 

If min(m, n )  is even (odd), ( j + p )  and ( l + p )  should be even (odd). Therefore the 
summation should be done only for the case of even (odd) I and j .  Hence we obtain 
the transition amplitude as 

rmw/ h ' I 2  exp(aat - r( t ) )  
= (2"+" ! n !) l( t ) [ ( f a o +  A) sin wt]"2 

x exp[ -i(n + f )  cot- '(a/2w + cot w t ) ]  

m i n ( m . n )  min (m,n ) -p  m i n ( m , n ) - p  

j ! l ! p !  c 
I = O  

x c  c 
p-0 J=o  
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The transition probability pmn corresponding to (8.8) is 

m w f h  exp(fat  - 2r( t ) )  
Pin = lamn12= (2m+nm!n! h) l ( t )Zs inot  

min(m,n)  min(m,n) -p  orp '  min(m.n) -p  orp '  c /,r=o c 
P , P ' = o  j J ' = O  

( - l ) J + j ' + l + l ' ( m !  !)2a,+~'~l+l'+~+~' 
j ! j ' ! I ! I ' ! p ! p ' !  

X 

9. Results and discussion 

In this section we shall discuss the results obtained in the previous sections. The 
propagator (equation (4.17)) and the wavefunction (equation (5.10)) are of new form. 
When we take f (  t )  = 0, the propagator is reduced to the same structure obtained by 
Cheng (1984) and others (Khandekar and Lawanda 1979, Janusis et a1 1979). In the 
case o f f (  t )  # constant the wavefunction is similar to that of Dodonov and Manko. 
To calculate the propagator K(x, t ;  xo, to)  in Feynman's path integral we should know 
the classical action, i.e. the classical Lagrangian, which gives the classical equation of 
motion. However, we can obtain the same classical equation of motion from many 
different classical actions (Caratu et a1 1976, Havas 1973, Currie and Saletin 1966) 
and thus one may have many different propagators corresponding to the classical 
actions. Therefore we should recognise that our propagator requires that the Hamil- 
tonian be identical to the energy of the system. In this sense the mechanical energy 
operator (equation (6.1)) is not identical to the Hamiltonian operator (equation (2.1)). 
Therefore we assume that this Hamiltonian represents the quantum mechanical dissipa- 
tive system. The matrix elements in the energy eigenvalues, which are involved in 
dissipation, should be examined in detail for a physical system. 

To quantise the energy we have used the energy operator equation (6.1). Here, the 
momentum operator represents the canonical momentum expressed by (h/i)(a/dx).  
The energy expectation values given in (6.16)-(6.20) contain the term e-" and thus 
decay exponentially. The second off-diagonal elements ( En+2,n and depend 
only on the exponential decaying constant a. The rest of all elements are involved in 
both the constant (Y and the external driving force f (  t ) .  

Figures 1 and 2 illustrate the decay of the energy eigenvalue E , , ( t )  when f ( r )  = 
fo6(r - to)  (see the appendix). We note that the results of Dodonov and Manko (1979) 
can be obtained by taking the driving force as f (  t )  =fo sin(wt + 4). 

Through the calculations (7.1 )-(7.2), we obtained the exact uncertainty relations 
in (7.3)-(7.6) at various states. The uncertainty for ( n ,  n )  states with period 7~ 
(equation (7.5)) is reduced to that of the harmonic oscillator at 180" and 0". We also 
note that for f (  t )  = 0, (7.3)-(7.6) become those of the damped harmonic oscillator. 
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< 

Figure 1.  Energy eigenvalue E ? , , " ( I ) ,  The curve represents the first term in (A3) at 
a / 2 w  =0.1. 

Figure 2. Energy eigenvalue E n , " ( f ) .  The curve represents the second term in (A3) at 
a l 2 w  =0.1. 

0 60 120 180 
w t  ideg) 

Figure 3. The uncertainty relation as the ( n ,  n )  state oscillates with period 7r 
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For example the uncertainty for ( n  - 1, n )  states is reduced to [ n ( n  - l)]”’h and that 
for (n ,  n )  states, ( n  + i ) h .  Figure 3 illustrates the uncertainty for (n ,  n )  states under 
the driving force f( t )  = f o S (  t - to). It does not decay exponentially, but oscillates with 
period 7r and the uncertainty relation is satisfied. 

The general expression for the transition amplitudes (equation (8.8)) and the 
transition probabilities (equation (8.9)) at various states are of a new form. Equation 
(8.9) is not zero and thus there exists the dissipative mechanism. Though the problems 
relating to the selection rules and the parity are not investigated in detail, we expect 
that the expressions for the amplitudes and the probabilities will be reduced to those 
obtained by Landovitz et a1 (1979, 1980, 1983a, b) for f( t )  = 0. 

As an example we take the delta function type for the external driving force: 

f(0 =foW - to) .  (AI)  

Then the energy eigenvalue E,, is obtained through the trivial calculation: 

r 2  

t >  t o .  
CY 

w (  t - to)  +- sin 2 w ( t  - t o )  
4 w  
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